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Abstract. By assuming that the superconducting pairing is due to the forward E-P scattering (FEP
pairing) it is shown that the critical temperature of clean systems Tc0 depends linearly on the E-P coupling
constant λ and the isotope effect α is very small. Impurities with the pronounced forward scattering (FS
impurities) change analytical properties of the quasiparticle Green’s function substantially compared to
the case of the isotropic scattering. The FS impurities are pair-breaking and affect in the same way s-
and d-wave FEP pairing making α = 1/2 in the dirty limit.The usual isotropic impurity scattering is
pair-weakening for s-wave and pair-breaking for the d-wave FEP pairing.

PACS. 74.20.-z Theories and models of superconducting state – 74.25.-q General properties; correlations
between physical properties in normal and superconducting states

1 Introduction

There are growing experimental evidences for d-wave pair-
ing in high-Tc superconductors (HTS) [1] – seemingly in
contradiction with the standard phonon mechanism. The
search for the pairing mechanism in HTS materials has
opened new directions in the theory of superconductivity.
For instance, in [2,3] it is proposed the antiferromagnetic
spin-fluctuation (AFS) pairing in copper-oxides with pro-
nounced peaks at Q = (±π,±π) in the spin-fluctuation
spectral density Ps(k, ω). Since the treatment of the AFS
pairing is approximate and uncontrollable, it is still un-
clear which mechanism is underlying d-wave pairing in
HTS systems. However, a possibility for the phonon mech-
anism of superconductivity in HTS materials has been
analyzed in [4,5], where the strong E-P coupling was ex-
tracted from an analysis of optic [6] and tunneling mea-
surements [7]. In that respect one expects that the very
sophisticated and recently developed methods of synthesis
of HTS oxides [8] will give an impetus for new tunneling
measurements, which might resolve the role of the E-P
interaction in the pairing mechanism.

The possibility of d-wave pairing in HTS materials
due to the renormalized (by strong electronic correlations)
E-P coupling has been put forward in a series of pa-
pers [9], where it was shown that for small hole doping
δ strong Coulomb correlations renormalize the E-P in-
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teraction giving rise to the pronounced forward (small-q)
scattering peak, while the backward scattering is strongly
suppressed. This renormalization of the square of the E-P
coupling constant |g(q)|2 is described by the vertex func-
tion Γ (q), i.e. |gscr(q)|2 = |g0(q)|2Γ 2(q), where g0(q) is
the bare coupling constant and Γ 2(q) is strongly peaked
at q = 0. Note, in what follows we assume that the square
of Γ (q) and therefore the square of the E-P coupling con-
stant are strongly peaked at q = 0 and has the delta-
function singularity, i.e. |gscr(q)|2 ≈ |g0(q)|2δ(q). This
specific screening of the E-P interaction suppresses elec-
tric resistivity [9,10] and can also lead to d-wave super-
conductivity [9]. Its physical meaning is that each quasi-
particle, due to the suppression of the doubly occupancy
on the same lattice, is surrounded by a giant correla-
tion hole with the characteristic size R ' a/δ, where a
is the lattice constant. These results are confirmed later
on by the slave-boson method [11]. The long-range E-P
interaction (pronounced forward scattering) can be also
due to the poor Coulomb screening in HTS oxides, which
has been proposed and elaborated in [12,13]. The for-
ward scattering might be pronounced in case of a large
density of states near some k-points at the Fermi sur-
face [14]. The possibility of the forward scattering and
the long-range forces between quasiparticles in strongly-
interacting low-dimensional systems was analyzed by An-
derson and coworkers [15]. They anticipated the failure of
the Fermi-liquid theory for the 2-D Hubbard model due
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to the orthogonality catastrophe. In [14] it is shown that
in the presence of the pronounced forward E-P interac-
tion (FEP pairing) the vertex (non-Migdal) corrections
might increase the superconducting critical temperature
Tc. However, in [14] only small angle scattering was con-
sidered, which is different from the scattering pronounced
at small q considered here and in [9,12,13]. Recently it
was argued [16] that the forward E-P scattering can, in
combination with the topology of the electronic Fermi sur-
face in HTS oxides, even produce linear T dependent re-
sistivity down to temperatures as 10 K. The nonmagnetic
impurity scattering is also renormalized by strong corre-
lations in the similar manner as the E-P interaction [9],
i.e. uscr(q) = u0(q)Γ (q), where u0(q) is the bare scatter-
ing potential. We stress here that in the paper the delta-
function singularity for the square of the impurity poten-
tial is assumed, i.e. u2

scr(q) ≈ u2(q)δ(q) – which is called
the forward impurity scattering (FS impurities). The pro-
nounced forward scattering in the pairing interaction and
in the impurity scattering causes substantial change of
change the physics of the problem as it is demonstrated
below. Note, the problem of the pronounced forward scat-
tering is very delicate and far from understanding, as it
has been already discussed in the framework of the phe-
nomenological Landau’s Fermi liquid [17].

In the following analysis we assume, as we already said,
an extreme case of the forward electron-phonon interac-
tion (FEP pairing) and of the forward nonmagnetic impu-
rity scattering (FS impurities), i.e. that |gscr(q)|2 ∼ δ(q)
and u2

scr(q) ∼ δ(q), where δ(q) is the Dirac delta-function.
We emphasize that this rather extreme approximation (for
long-range forces) picks up the main physics, and at the
same time it is a valuable approximation whenever the
range R of the effective interaction fulfills the condition
R� k−1

F , where the momentum cut-off in the pairing po-
tential qc is very small, i.e. qc(∼ 1/R) � kF. The finite
cut-off effects are also studied in this paper, where it is
shown that the delta-function approximation is the leading
order with respect to the small parameter qc/kF. More-
over, the delta-function approximation greatly simplifies
the structure of the Eliashberg equations by omitting in-
tegration in k-space. A similar approximation is used for
the AF spin-fluctuation mechanism of pairing, where four
peaks at Q = (±π,±π) in the spin-fluctuation density
Psf(k, ω) were replaced by four delta-functions [18]. The
constructive and destructive interplay of the FEP and
AFS mechanisms in the case of d-wave pairing was stud-
ied in [19].

In this paper we show: (i) that the superconducting
critical temperature Tc for the FEP pairing deviates sub-
stantially from the BCS formula; (ii) the FS impurities
induce substantial self-energy effects in the normal state
and affect Tc for d- and s-wave FEP pairing equally, while
they do not affect the usual isotropic BCS pairing. Ver-
tex corrections for the FS impurities in the normal state
are studied in the ladder approximation, while the more
complicated cases of the E-P and impurity vertex correc-
tions in the normal and superconducting state is, due to
complexity, a matter of future activity.

2 Eliashberg equations for FEP pairing
and FS impurities

Let us write the Eliashberg equations in the presence of
the FEP pairing potential Vep(k, ω) = δ(k)Vep(ω) and
in the presence of the FS impurities (u2

scr(k) = δ(k)u2),
where the latter is treated first in the self-consistent Born
approximation – on vertex corrections see below. The
normal and anomalous Green’s functions are defined by
G(k, ωn) = −[iωnZ(k, n)+ξ̄n(k)]/D(k, n) and F (k, ωn) =
−Z(k, n)∆(k, n)/D(k,m) respectively. The renormaliza-
tion function Z(k, n) ≡ Zn(ξ), the energy renormalization
ξ̄(k, n) ≡ ξ̄n(ξ) and the superconducting order parameter
∆(k, n) ≡ ∆n(ξ) are solutions of the following equations
(ωn = πT (2n+ 1))

Zn(ξ) = 1 +
T

ωn

∑
m

Veff(n−m)
ωmZm(ξ)

Dm(ξ)
,

ξ̄n(ξ) = ξ(k)− T
∑
m

Veff(n−m)

Dm(ξ)
ξ̄m(ξ),

Zn(ξ)∆n(ξ) = T
∑
m

Veff(n−m)Zm(ξ)∆m(ξ)

Dm(ξ)
· (1)

Here, Veff(n−m) = Vep(n−m)+δn,mniu
2/T and Dn(ξ) =

[ωnZn(ξ)]2 + ξ̄2
n(ξ)+[Zn(ξ)∆n(ξ)]2, ξ(k) is the bare quasi-

particle spectrum and ni is the impurity concentration.

3 Normal state in the presence of FS
impurities only

Let us consider the normal state and neglect for the mo-
ment the E-P interaction, i.e. we put Vep(n−m) = 0 and
∆n(ξ) = 0 and look for the renormalization of the Green’s
function by the FS impurities in the self consistent Born
approximation, i.e.

G−1(k, ωn) ≡ iω̄n(ξ)− ξ̄n(ξ) = G−1
0 (k, ωn)−Σimp

B (k, ωn),

where iω̄n(ξ) ≡ iωnZn(ξ). The self-energy in this approx-
imation is given by

Σimp
B (k, ωn) = Γ 2

FG(k, ωn) (2)

where ΓF =
√
niu – see Figure 1a. The solutions for ξ̄n

and ω̄n are

ξ̄n=ξ

[
1

2
+

ωn√
(ωn+iξ)2+4Γ 2

F+
√

(ωn − iξ)2 + 4Γ 2
F

]
,

ω̄n=
ωn

2
+

1

4

[√
(ωn+iξ)2+4Γ 2

F+
√

(ωn−iξ)2+4Γ 2
F

]
.

(3)

By using equation (3) and for the standard isotropic spec-
trum one obtains for the density of states N(ω)/N(0) = 1,
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(a)

(b)

Fig. 1. (a) The self-energy Σimp
B (k, ωn) = Γ 2

FG(k, ωn) in the
presence of the FS impurities in the Born approximation; (b)
the self-energy Σimp

V (k, ωn) = Γ 2
FG(k, ωn)/[1 − Γ 2

FG
2(k, ωn)]

in the presence of the FS impurities with ladder vertex cor-
rections.

i.e. N(ω) is unrenormalized in the presence of the FS
impurities – like in the case of the normal isotropic im-
purity scattering (NS impurities). This might be not the
case for an anisotropic spectrum. However, the FS impu-
rities strongly renormalize the inverse life-time τ−1

B (ω) ≡

−ImΣimp
B (ξ = 0, ω). By using equation (3) and by the an-

alytical continuation of Σimp
B (ξ = 0, iωn → ω + iδ) one

obtains (ΓF =
√
niu)

−ImΣimp
B (ξ = 0, ω) = ΓFΘ(2ΓF − ω)

√
1−

( ω

2ΓF

)2

. (4)

Θ is the Heavyside function. We see that the FS impuri-
ties (in the self-consistent Born approximation) introduce
a nonanalyticity of τ−1

B (ω = 0) as a function of ni, i.e.

τ−1
B (ω = 0) =

√
niu. Note, for the NS impurities one has

τ−1
B (ω = 0) ∼ niN(0)u2.

Due to the absence of integration over momenta in
Σimp(k, ωn) for the FS impurities there is no small param-
eter in the theory, like kFl for the NS impurities, where kF

is the Fermi wave vector and l is the quasiparticle mean-
free path. Therefore, the vertex corrections for the FS
impurities become important – see Figure 1b. The sum-
mation of the ladder diagrams in Figure 1b yields the self-
energy

Σimp
V (k, ωn) =

Γ 2
FG(k, ωn)

1− Γ 2
FG

2(k, ωn)
, (5)

where ΓF =
√
niu. It is seen from equation (5) that the

ladder vertex corrections screen impurity scattering in the
Born approximation. The retarded quasiparticle Green’s

function G(ξ = 0, iωn → ω + iδ) ≡ GR(ω) is given by

GR(ω) =
121/6

√
3ΓF

[
ω

Φ(ω)
+

1

121/3

Φ(ω)

ωΓ 2
F

]
, (6)

where Φ(ω) ≡ Φ(iωn → ω + iδ) and

Φ(iωn) =

[
9Γ 4

Fω
2
n +

√
(9Γ 4

Fω
2
n)2 + 12Γ 6

Fω
6
n

]1/3

. (7)

In the limit of small frequency, i.e. for ω � 3
√

3ΓF/2
the imaginary part of the self-energy (the inverse life-time

τ−1
V ≡ −ImΣimp

V (ξ = 0, ω)) has the form

−ImΣimp
V (ξ = 0, ω) ≈ Γ 2/3

F ω1/3. (8)

Note that τ−1
V ∼ ω1/3, which means that τ−1

V � τ−1
B for

ω � ΓF, i.e. the scattering by many impurities, calculated
in the ladder vertex approximation, screen the single im-
purity Born scattering. The density of states in the vertex
approximation will be studied elsewhere [20].

4 Superconductivity due to FEP
and in the presence of FS impurities

In further analysis it is assumed that the pairing is due to
the forward electron-phonon scattering – the FEP pair-
ing. Therefore, one expects in this case that Tc is different
from the usual BCS (or Eliashberg) formula and that the
FS and NS impurities affect this pairing strongly. In fur-
ther analysis of superconductivity due to FEP mechanism
two assumptions are made: (1) the E-P interaction is con-
sidered in the weak coupling limit – the strong coupling
limit will be studied elsewhere [20]; (2) the effects of the
FS impurities on Tc are studied in the self-consistent Born
approximation and vertex corrections are not taken into
account, because anomalous vertex corrections to the gap
equation are at present unknown. However, the effects of
the FS impurities, treated in the Born approximation, on
Tc are expected to be preserved qualitatively if the anoma-
lous vertex corrections are included. In the latter case one
expects less reduction of Tc, due to the screening by the
vertex corrections.

4.1 Tc due to FEP pairing in clean systems

We find Tc in the weak coupling limit [21], where Vep(n−
m) ≈ VepΘ(Ω−|ωn|)Θ(Ω−|ωm|) andΩ is the phonon cut-
off energy. In this limit one obtains Z(k, n) = 1 and the
FEP pairing gives the maximum Tc on the Fermi surface,
i.e. for ξ = 0 where ξ̄n(k, n) = 0. The solution of the
equation (1) in the weak coupling limit and for Tc � Ω is
given by

Tc0 =
λ

4N(0)
=
Vep

4
· (9)
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Several points should be stressed. First, Tc0 depends lin-
early on λ = N(0)Vep, which is due to the delta-function
form of Vep(k, ω). This result is similar to that obtained
in [18] for the AFS pairing, where the delta-function
limit was used [18]. Second, contrary to the FEP pair-
ing there is a threshold condition for the pairing potential
Vsp > 2|µ| in the case of the AFS pairing, where Vsp is
the spin-fluctuation constant and µ is the chemical po-
tential [18]. Third, in the case of the pairing potential
Vep(q, ωn) with the finite cut-off qc 6= 0 it is shown [20]
that Tc0 ≡ Tc0(qc = 0) is the zeroth-order with respect to
qc. For the short-range pairing potential with qc ∼ 2kF,
i.e. when qcVF ∼ W ∼ 1/N(0) one obtains the standard
BCS result TBCS

c0 = 1.13Ω exp(−1/λ), while for the long-
range pairing potential with the cut-off qcVF � Ω (the
FEP pairing) the finite-qc correction to Tc0 is given by

Tc ' Tc0

(
1−

7ζ(3)qcVF

4π2Tc0

)
. (10)

The finite value of qc lowers Tc0 of the FEP (qc = 0)
pairing. Fourth, in the weak coupling limit there is no iso-
tope effect, i.e. (−d lnTc0/d lnM)= 0 for Ω → ∞ and
Tc0 � Ω, although the pairing is due to the E-P inter-
action! Note, that small α is obtained also in the case
qc � kF. The strong coupling (retardation) effects intro-
duce a mass (M) dependence of Tc. For example, by as-
suming the single mode (Einstein) phonon spectrum with
the frequency Ω one obtains Veff(ωn) = VepΩ

2/(Ω2 +ω2
n)

– see equation (1). In case when [λN−1(0)/2Ω] < 1 one
obtains

Zn(0) ' 1 +
λN−1(0)

2Ω

Ω2

Ω2 + ω2
n

· (11)

Because Zn > 1 (note ξ̄n(ξ = 0) = 0) the critical temper-
ature

T
(1)
c0 =

Tc0

[1 + λ/2ΩN(0)]2
(12)

is decreased, i.e. T
(1)
c0 < Tc0. Since Ω ∼M−1/2 one obtains

α ≡ −(d lnT
(1)
c0 /d lnM) ≈ Tc0/Ω � 1/2 (a ∼ 1), because

Tc0 � Ω is assumed. The problem of the isotope effect is
much more complicated than it is treated here. However,
this simplified analysis shows a connection between small
α and the dominance of small-q scattering in the pairing
potential. This interesting result is an impetus for future
study.

4.2 Tc due to FEP in the presence of FS impurities

The FS impurities affect Tc, which is due to the FEP
pairing. In the weak coupling limit Tc is given by

1 = VepTc

Ω∑
ωn=−Ω

1

ω2
nZn(ξ = 0)

, (13)

where Zn(ξ = 0) = (1 +
√

1 + 4Γ 2
F/ω

2
n)/2 and ξ̄n(ξ =

0) = 0. Note, equation (13) holds for all kind of FEP
pairings (s-, d-, etc.). Some limiting cases are considered:
(a) ΓF � πTc – in that case Tc is given by

Tc ≈ Tc0

[
1−

4ΓF

49Tc0

]
(14)

(b) ΓF � πTc – if ΓF � Ω/2 is fulfilled one obtains

Tc ≈
πΩ

2γ
exp(−πΓF/Vep), γ ≈ 1.78. (15)

We point out two results. First, the FS impurities are
pair weakening for the FEP pairing – the exponential fall-
off of Tc with an increase of ΓF. This is contrary to the
pair breaking effect of the NS impurities on usual d-wave
pairing, where Tc = 0 for Γcr ≈ 0.8Tc0. Second, the FS
impurities give rise to the large isotope effect α = 1/2 in
the dirty limit ΓF � Tc – note Tc0 is mass independent.

4.3 Tc due to FEP in the presence of NS impurities

In this case one should make difference between s-wave
and d-wave FEP pairings. For the NS impurities one has
ξ̄n(ξ) = 0 and Zn = 1 + Γ/|ωn|, where Γ = πN(0)u2.

4.3.1 d-wave FEP pairing

In that case Tc in the weak coupling limit is given by

1 = VepTc

Ω∑
ωn=−Ω

1

ω2
nZ

2
n

· (16)

Some limiting cases of equation (16) are interesting.
(a) For Γ � πTc one obtains

Tc
∼= Tc0

(
1−

2Γ

πTc0

)
· (17)

Note, for the d-wave FEP pairing the slope (−dTc/dΓ ) =
2/π is smaller than the slope of the usual d-wave pairing
in the presence of the NS impurities, where (−dTc/dΓ ) =
π/4. As a consequence the d-wave FEP pairing is more
robust in the presence of the NS impurities than the usual
d-wave pairing [22];

(b) Γ � πTc – in this limit one obtains from
equation (16) that Tc = 0 for Γcr ' (4/π)Tc0. Note, in
the case of the usual d-wave pairing Γcr ' 0.8Tc0, which
confirms our statement on the robustness of the d-wave
FEP pairing, compared with the usual d-wave pairing.

4.3.2 s-wave FEP pairing

Tc in the weak coupling limit has the form

1 = VepTc

Ω∑
ωn=−Ω

1

ω2
nZn

· (18)
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The denominator in equation (18) is proportional to
Zn while for the d-wave FEP pairing to Z2

n – see
equation (16). Since Zn > 1 it means that in the presence
of the NS impurities s-wave FEP pairing is more robust
than d-wave FEP pairing. By solving equation (18) one
obtains

Tc

Tc0
=

4

π2ρ

[
ψ

(
1

2
+
ρ

2

)
− ψ

(
1

2

)]
, (19)

where ψ(x) is the di-gamma function and ρ = Γ/πTc.
(a) Γ � πTc – one obtains

Tc
∼= Tc0

(
1−

7ζ(3)Γ

π3Tc0

)
· (20)

Note that −dTc/dΓ |s � −dTc/dΓ |d = 2/π, i.e. in the
presence of the NS impurities the s-wave FEP pairing is
more robust than the d-wave FEP pairing;

(b) Γ � πTc – in this case Tc goes to zero asymptoti-
cally, i.e.

Tc ≈
Γ

2π
exp(−πΓ/4Tc0). (21)

This means that the NS impurities are pair-weakening for
the s-wave FEP pairing.

4.4 Tc for BCS s-wave pairing in the presence of FS
impurities

Based on equation (1) one obtains Tc in the presence of
the FS impurities

1 = VepTc

∑
n

Θ(Ω − |ωn|)Q(ωn, ΓF). (22)

One can show that Q(ωn, ΓF) = π/|ωn|, which is the sim-
ple BCS formula in the absence of impurities. This means
that the BCS s-wave pairing is unaffected by the FS im-
purities – the Anderson theorem holds.

5 Conclusions

In summary, it is shown here that: (a) by assuming that
the pairing is due to the forward E-P scattering the crit-
ical temperature of clean systems Tc0 depends linearly on
the E-P coupling constant λ in the Migdal approxima-
tion; (b) the isotope effect is small in the weak coupling
limit, i.e. α� 1 for Tc0 � Ω; (c) impurities with the pro-
nounced forward scattering (FS impurities) change an-
alytical properties of the quasiparticle Green’s function
substantially and vertex corrections in the ladder approx-
imation screen the single impurity Born scattering; (d)
the FS impurities can push α to 1/2 in the dirty limit
(ΓF � Tc); (e) the FS impurities affect in the same way
s- and d-wave FEP pairing and they are pair-weakening
for both pairings; (f) the NS isotropic impurities are pair-
weakening for s-wave FEP pairing and pair-breaking for

d-wave FEP pairing; (g) the FS impurities do not affect
the usual BCS s-wave pairing.

Finally, we point out that the (non-Migdal) vertex cor-
rections are important for the FEP pairing, because in the
absence of momentum integration in the self-energy there
is no small parameter in the theory, like λωD/EF in the
Migdal theory. These effects can increase Tc as it has been
asserted in [14]. However, it is shown that for the FEP
pairing in the Migdal approximation Tc is linear function
of the E-P coupling constant λ contrary to the exponen-
tial dependence obtained in [14]. The latter is due to the
assumed small angle scattering in [14], which is different
from the pronounced small q scattering studied here. The
effect of the vertex corrections on Tc for the FEP pairing
will be studied elsewhere.

In conclusion, the forward E-P and impurity scatter-
ing produce non-Fermi liquid effects in the normal state
and non-BCS superconductivity what shall be studied
in [20].
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